| Surname | Centre
 Number | Candidate
 Number |
| :--- | :--- | :--- | :--- |
| Other Names | | |

A.M. THURSDAY, 18 June 2015

1 hour 45 minutes

ADDITIONAL MATERIALS

In addition to this paper, you will require a calculator, a Case Study Booklet and a Data Booklet.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use pencil or gel pen. Do not use correction fluid. Write your name, centre number and candidate number in the spaces at the top of this page.
Write your answers in the spaces provided in this booklet. If you run out of space, use the continuation pages at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

This paper is in 3 sections, \mathbf{A}, \mathbf{B}, and \mathbf{C}.
Section A: 60 marks. Answer all questions. You are advised to spend about 1 hour on this section.

Section B: 20 marks. The Case Study. Answer all questions. You are advised to spend about 20 minutes on this section.
Section C: Options; 20 marks. Answer one option only. You are advised to spend about 20 minutes on this section.

(a) (i) Calculate the charge stored by each of the capacitors.
\qquad
\qquad
\qquad
\qquad
(ii) Calculate the total energy stored by all three capacitors.
\qquad

(iii) By estimating the time taken for the capacitor to lose 90% of its charge or otherwise,

Examiner calculate the time taken for the capacitor to lose 99% of its charge.

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

2. A large square loop has sides of length 0.815 m and is rotated through 90° in a uniform magnetic field of $65 \mu \mathrm{~T}$. The diagrams show the same square loop at different times.

(a) Determine the magnetic flux through the square loop:
(i) when $t=0.00 \mathrm{~s}$ (sides QR and SP are parallel to the B-field);
\qquad
\qquad
\qquad
(ii) and when $t=0.12 \mathrm{~s}(\mathrm{PQ}, \mathrm{QR}, \mathrm{RS}$ and SP are perpendicular to the B-field).
\qquad
\qquad
\qquad
(b) The square loop is made of copper. Explain why there is a current in the loop as it is rotated.
 as the square loop is rotated.

The copper wire from which the square loop is made has a circular cross-section of diameter 6.0 mm . The resistivity of copper is $1.67 \times 10^{-8} \Omega \mathrm{~m}$. Calculate the mean current flowing through the square loop as it is rotated between $t=0.00 \mathrm{~s}$ and $t=0.12 \mathrm{~s}$.

3. (a) Some nuclei undergo fusion while others undergo fission. Both processes can result in the release of energy. Discuss these processes in terms of energy and stability. The binding energy per nucleon graph is provided to assist your answer.
binding energy per nucleon
(MeV/nucleon)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad ..
(b) Use data from the graph to estimate the energy released in the reaction.

$$
{ }_{0}^{1} \mathrm{n}+{ }_{1}^{1} \mathrm{p} \longrightarrow{ }_{1}^{2} \mathrm{H}
$$

(c) Use the graph to estimate the energy released in the following reaction. (Hint: use the binding energies on both sides of the reaction equation.)

$$
{ }_{0}^{1} \mathrm{n}+{ }_{92}^{235} \mathrm{U} \longrightarrow{ }_{55}^{137} \mathrm{Cs}+{ }_{37}^{96} \mathrm{Rb}+3{ }_{0}^{1} \mathrm{n}
$$

4. Technetium-99 emits only γ (gamma) radiation. An experiment was carried out to show this. Various absorbers were placed between the source and detector at the times shown in the table below and the mean count rate was obtained.

Absorber	Time from the start of the experiment $/ \mathrm{min}$	Count rate $/ \mathrm{s}^{\mathbf{- 1}}$
none	30	425
1 sheet $(0.1 \mathrm{~mm})$ of paper	90	374
none	150	338
3 mm of aluminium	210	267
none	270	268
10 cm of lead	330	1
none	390	213

These results were plotted on a graph. The decay curve of the technetium-99 itself is plotted as a dotted line which shows the activity dropping continuously as the experiment proceeded.

(a) Determine the half-life of technetium-99.
Examiner
(b) Explain why the results are consistent with technetium-99 only emitting γ radiation.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) The detector only detects 0.6% of the γ radiation emitted by the source. Use the graph and the half-life of technetium-99 to calculate the initial mass of technetium-99 (the mass of a technetium-99 atom is 99 u).
5. (a) A long thin solenoid carries a current of 2.3A, has 12000 turns and a length of 1.80 m .

Calculate the magnetic field strength (B) in the centre of the long solenoid.

(b) In a cyclotron a uniform magnetic field (B) provides a centripetal force while an electric field accelerates the charged particles as they cross between the dees. The resulting motion is a spiral as shown.

 the a.c. supply is given by:

$$
f=\frac{B q}{2 \pi m}
$$

where q is the charge and m is the mass of the particle.
(ii) Calculate the cyclotron frequency for a carbon nucleus with $q=6 e$ and mass $m=12 \mathrm{u}$ in a strong B-field of 3.3 T .
6. Electrons flow through a semiconductor slice which is used as a Hall probe.

(a) Indicate on the above diagram:
(i) the face of the slice that becomes positively charged;
(ii) a voltmeter suitably connected to measure the Hall voltage.
(b) Calculate the Hall voltage if the drift velocity of the free electrons is $5.7 \times 10^{-3} \mathrm{~ms}^{-1}$.
\qquad
\qquad
\qquad
\qquad
\qquad
(c) As electrons move through the slice, explain why no work is done on them by the Hall voltage.
(d) The concentration of free electrons in the semiconductor slice is $7.0 \times 10^{22} \mathrm{~m}^{-3}$. Calculate the current in the slice.

SECTION B

Answer all questions.
The questions refer to the case study.
Direct quotes from the original passage will not be awarded marks.
7. (a) Give two reasons why only a small fraction of the work done in compressing the gas is transferred to gravitational potential energy of the football (paragraphs 3 \& 4). Note that losses due to heat and sound are negligible.
(b) Use the values $u=20 \mathrm{~ms}^{-1}, m_{0}=1.5 \mathrm{~kg}$ and $\frac{\Delta m}{\Delta t}=5.9 \mathrm{kgs}^{-1}$ to calculate the speed of the rocket after 0.175 s (paragraph 11 and equation 2).
\qquad
\qquad
\qquad
\qquad
(c) Check that the units (or dimensions) of equation 4 are correct.

$$
\frac{\Delta m}{\Delta t}=\pi r^{2} \rho u
$$

(d) Calculate the exhaust speed of water from the rocket assuming a rate of change of mass of $9.5 \mathrm{~kg} \mathrm{~s}^{-1}$ and the radius of the bottle neck is 1.1 cm using equation 4 (density of water $=1000 \mathrm{~kg} \mathrm{~m}^{-3}$).
(e) Using your own words explain why 'the actual rocket does not keep up with its theoretical counterpart' (paragraphs 16-19 and equation 6).
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(f) Calculate the initial exhaust speed of water leaving a bottle pumped to a pressure of $7.8 \times 10^{5} \mathrm{~Pa}$ (the outside atmospheric pressure is $1.0 \times 10^{5} \mathrm{~Pa}$) using equation 6 (density of water $\left.=1000 \mathrm{~kg} \mathrm{~m}^{-3}\right)$.
(g) The table below refers to the terms on the right hand side of equation 8 .

$$
F_{\mathrm{res}}=\pi r^{2} \rho u^{2}-m g-0.0107 v^{2}
$$

Complete the table, the first row has been completed for you (paragraphs 20-22).

Term	Description	During the first 0.2 s , this term		
		increases	remains constant	decreases
$\pi r^{2} \rho u^{2}$	Thrust force from exhaust water			\checkmark
$m g$				
$0.0107 v^{2}$				

(h) Show that the first term $\left(\pi r^{2} \rho u^{2}\right)$ in equation 8 can be written as $2\left(p-p_{\text {atm }}\right) \times A_{\text {neck }}$ where $A_{\text {neck }}$ is the cross-sectional area of the bottle opening (see equation 5 or 6).
\qquad
\qquad
\qquad
\qquad
(i) In practice, using Boyle's law is inappropriate because the gas cools as it expands.
(i) Explain why little or no heat flows when the gas in the bottle expands.
\qquad
\qquad
\qquad
(ii) Use the first law of thermodynamics to explain why the temperature of the gas decreases.
\qquad
\qquad
\qquad

SECTION C: OPTIONAL TOPICS

Option A: Further Electromagnetism and Alternating Currents \square
Option B: Revolutions in Physics - The Newtonian Revolution \square
Option C: Materials \square
Option D: Biological Measurement and Medical Imaging \square
Option E: Energy Matters \square
Answer the question on one topic only.
Place a tick (\checkmark) in one of the boxes above, to show which topic you are answering.
You are advised to spend about 20 minutes on this section.

Option A: Further Electromagnetism and Alternating Currents

8. (a) In the following circuit, both the Q factor and the resonance frequency can be varied by varying the capacitance and the resistance. However, the inductance remains constant.

(i) Show that the maximum and minimum resonance frequencies are approximately 8800 Hz and 3600 Hz respectively.
(ii) Calculate the maximum Q factor and the minimum Q factor.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[^0](c) The resonance curve for the circuit with $R=35 \Omega$ and $C=15 \mathrm{nF}$ is shown below.

(i) Add two labelled curves to the graph showing the variation of current against frequency when $R=20 \Omega$ and $C=15 \mathrm{nF}$ and when $R=50 \Omega$ and $C=15 \mathrm{nF}$. Space for your calculations if needed.
(ii) Use the equation $Z=\sqrt{\left(\omega L-\frac{1}{\omega C}\right)^{2}+R^{2}}$ to explain in detail why the current varies

Examiner with frequency as shown in the graph (no calculations are required).
(ii) Tycho Brahe and his associate could easily measure parallax for the Moon ($0.40 \times 10^{6} \mathrm{~km}$ away) but were barely able to detect the parallax of a comet which appeared in 1577. Explain why this provided evidence against Aristotle's division of the universe into sublunary and superlunary (beyond the Moon) regions, where different laws applied.
(b) (i) A planet's speed and distance from the Sun at perihelion (P) and aphelion (A) are related by:

$$
r_{\mathrm{P}} v_{\mathrm{P}}=r_{\mathrm{A}} v_{\mathrm{A}}
$$

Derive this from Kepler's equal area law (Kepler's second law), adding to the diagram to assist your explanation.

(ii) For Jupiter, $r_{\mathrm{P}}=7.41 \times 10^{8} \mathrm{~km}$ and $r_{\mathrm{A}}=8.16 \times 10^{8} \mathrm{~km}$. Evaluate the percentage change in Jupiter's speed as it goes from A to P.
(iii) At P and A a planet's elliptical path coincides with circles of equal radius.

I. Show that the ratio of forces $\frac{F_{\mathrm{P}}}{F_{\mathrm{A}}}$ on the planet at P and A is $\frac{v_{\mathrm{P}}^{2}}{v_{\mathrm{A}}^{2}}$.
\qquad
\qquad
\qquad
II. Use the relationship in (b)(i) to show clearly that this is consistent with an inverse square law force between the Sun and planet.
\qquad
\qquad
\qquad
\qquad
(c) The diagram, from Newton's Principia, shows the motion of a body acted upon by short, sharp forces at regular intervals.

(i) In which directions) do these forces act?
\qquad

Option C: Materials

Examiner
10. (a) The picture shows the microscopic structure of glass, an amorphous solid.

Explain the following macroscopic properties of glass.
(i) Glass fibres are brittle, showing no plastic deformation before fracture.
\qquad
\qquad
(ii) A sheet of glass can be fractured accurately and cleanly if its surface is scratched and then the glass is bent slightly. [You may wish to draw a labelled diagram to support your answer.]

The graph opposite shows the stress against strain graph for alloy A.
(i) Use information from the graph to confirm that the Young modulus of alloy A is 80 GPa .
(ii) Alloy A is in the form of a cylinder of length 2.5 m and diameter 2.5 mm . Determine the work done to stretch this alloy to breaking point.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

(iii) Draw, on the same axes, a simplified stress against strain graph for alloy B using data from the table opposite.
(iv) When these alloys are placed under a constant stress over a long period of time all three undergo creep leading to necking and eventually fracture.
I. Explain the terms in italics.

Creep:

Necking:
II. A creep curve for alloy C is shown. The alloy was subjected to a constant stress of 100 MPa . Using information in the table on page 28, sketch on the same graph (below) a creep curve which could represent alloy C when it is subjected to a constant stress of 120 MPa .

(v) During production the strength of the alloy is controlled by a process called cold working (or work hardening). Describe this process and explain how it increases the strength of the alloy under production.

(a) Which of the above points correspond to X-ray photons produced:
(i) by rapidly decelerating electrons; [1]
(ii) after knocking out the inner electrons of the target atom; [1]
(iii) with the greatest energy per photon? [1]
(b) Use information from the graph to calculate the accelerating pd used in the X -ray tube.
(c) Before taking an X-ray photograph the X-ray beam emerging from the tube is passed through an aluminium filter. Explain why it is necessary for the X-rays to be filtered.
(d) (i) Name the region of the electromagnetic spectrum used in MRI scans.
(ii) Briefly explain the function of this electromagnetic radiation in the working of an MRI scan.
(iii) Describe one disadvantage of MRI scanning as an imaging technique.
\qquad
(e) The following diagram shows an ECG trace for a healthy person.

State what electrical event and physical change occur at:
(i) Point A ;

Electrical event

Physical change
(ii) Point B.

Electrical event
\qquad
\qquad
Physical change
(f) Ultrasound can be used to measure the speed at which blood is flowing. When reflected off a red blood cell, the wavelength of the ultrasound changes.
(i) What is the name given to this effect?
(ii) If ultrasound of wavelength $500 \mu \mathrm{~m}$ is used, its speed when travelling through blood is $1500 \mathrm{~m} \mathrm{~s}^{-1}$ and the wavelength received at the detector is $500.4 \mu \mathrm{~m}$. Calculate the speed of the flow of blood.
(g) (i) PET scans are often used to detect tumours. What part of the electromagnetic spectrum do PET scanners detect?
(ii) Why are PET scanners not commonly used in district hospitals?

Option E: Energy Matters

12. (a) Explain why it is important to enrich uranium before it is suitable to be used in a fission nuclear power station.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) In a breeder nuclear reactor uranium-238 is changed into plutonium. Explain the advantage of this and how it is achieved.
\qquad
\qquad
\qquad
\qquad
\qquad
(c) State two possible advantages of deuterium-tritium fusion over uranium-235 fission. [2]
(d) For nuclear fusion to be a viable energy resource a deuterium-tritium plasma must have a large enough confinement time (τ), a high enough temperature (T) and a high enough concentration (number per m^{3}) of deuterium and tritium particles (n). These conditions are usually expressed as:

$$
\tau T n \geq 3.5 \times 10^{28} \mathrm{~s} \mathrm{~K} \mathrm{~m}^{-3}
$$

(i) Explain why a high temperature (T) is necessary.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) A confinement time (τ) of 0.9 s and a temperature of 120 million Kelvin are attainable. Calculate the minimum density of plasma required in kgm^{-3} (the mean mass of deuterium and tritium ions is 2.5 u).
(e) The energy that can be produced from 1 kg of uranium-235 is $8.3 \times 10^{13} \mathrm{~J}$ whereas the energy available from 1 kg of deuterium-tritium is $3.4 \times 10^{14} \mathrm{~J}$. Calculate the energy that can be produced from 1 kg of anti-matter (remember that anti-matter and matter annihilate).
(f) Coal, biomass, uranium-235, natural gas and wind are five energy resources with similar mean costs per MWh of energy production ($£ 40-£ 60$ per MWh). Discuss other advantages and disadvantages of all five energy resources.

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.

GCE A level
1325/01-B

|| |||

 S15-1325-01BPHYSICS - PH5
ASSESSMENT UNIT
A.M. THURSDAY, 18 June 2015

CASE STUDY FOR USE WITH SECTION B

Examination copy

To be given out at the start of the examination. The pre-release copy must not be used.

Rocket Science without the Chemistry

Introduction

It's quite remarkable how much analysis of rocket motion can be done when one is armed with some physics, a bit of mathematics and a spread sheet.

A simple rocket system that converts plastic bottles to rockets can be bought relatively cheaply. A good example is the aquapod $®$, upon which the system in the photograph is based. It's an upside-down, pressurised plastic bottle, half filled with water. When released, water is ejected at high speed from its tail end resulting in the rocket accelerating upwards. Because downward momentum is given to the water, the rocket gains upward momentum. Early on in the investigations into these rockets, it was discovered that a ball placed on top of the bottle was far easier to investigate and model.

Energy Analysis Considering Gravity

Diagram 1

The simplest possible analysis that can be done to the rocket is to apply conservation of energy. We could approximate that the work done in compressing the gas eventually becomes gravitational potential energy of the ball. How much energy is stored in the compressed gas? For this, we need a bit of A level Maths in order to calculate the area below an isothermal compression in a p - V diagram. This is the result of the integration (that doesn't require learning).

$$
W=p \times V \times \ln \left(\frac{p}{p_{\text {atm }}}\right) \quad \text { Equation } 1
$$

where p is the high pressure inside the bottle, V is the volume of compressed air inside the bottle and $p_{\text {atm }}$ is atmospheric pressure.

So a 2 litre bottle half filled with water and with a pressure of $4.4 \times 10^{5} \mathrm{~Pa}$ inside it can supply around 650 J of energy. If all this energy were transferred to a 0.45 kg ball, the ball should attain a height of some 150 m . In practice, however, only a small fraction of this energy is transferred to the ball.

This experiment was carried out with a set of plastic bottles varying in volume from 500 ml to 3.0 litre. Each bottle was half full of water at take-off and each bottle was pumped to a pressure of $4.4 \times 10^{5} \mathrm{~Pa}$ (from an initial atmospheric pressure of $\left.1.0 \times 10^{5} \mathrm{~Pa}\right)$. The results are shown in the graph (diagram 2).

Diagram 2

Unsurprisingly perhaps, this simplistic conservation of energy argument has not been successful and the relationship between maximum height of the rocket and volume of the bottle is not directly proportional as was predicted by conservation of energy.

Ideal Rocket Theory (fixed exhaust speed and ignoring gravity)

Now for some more detailed analysis. We need to look at what causes the acceleration of the rocket. In effect, we need to apply Newton's second law to the rocket and to do that we need to know the rate of change of momentum of water leaving the bottle. First, let's define some terms:
$m_{0}=$ total initial mass of the rocket;
$t=$ time counting from blast-off;
$\frac{\Delta m}{\Delta t}=$ constant rate of ejecting of mass;
$u=$ constant speed of the water leaving the bottle (relative to the rocket).
The resultant force exerted on the water is equal to its rate of change of momentum. The momentum gained by the water per second is $u \frac{\Delta m}{\Delta t}$ (remember, $\frac{\Delta m}{\Delta t}$ is the mass leaving the bottle per second). This, therefore, is the force experienced by the water and by Newton's 3rd law, this is also the force experienced by the rocket. So, we now know that the thrust force acting on the rocket is $u \frac{\Delta m}{\Delta t}$.
The mass of the rocket is decreasing at a constant rate of $\frac{\Delta m}{\Delta t}$ so its mass at any time t is given 10 by $\left(m_{0}-\frac{\Delta m}{\Delta t} t\right)$.
This is enough information to use Newton's $2^{\text {nd }}$ law $(F=m a)$ to give an equation for the acceleration. Mathematics (that won't require learning) then leads to solutions for both velocity and height. Here are the equations:

$$
\begin{array}{ll}
v=-u \ln (1-\alpha t) & \text { Equation 2 } \\
h=\frac{u}{\alpha}[(1-\alpha t) \ln (1-\alpha t)+\alpha t] & \text { Equation 3 }
\end{array}
$$

α is the ratio of the rate of loss of mass to the initial mass, $\left(\alpha=\frac{\frac{\Delta m}{\Delta t}}{m_{0}}\right)$.
We can now try to apply these equations to a typical 2 litre bottle. The total mass of the water, bottle and ball is around 1.5 kg (i.e. $m_{0}=1.5 \mathrm{~kg}$). Of this, 1.0 kg is water, 0.45 kg for the ball and the bottle has a mass of 0.05 kg . From high speed video analysis of the rocket, all 1.0 kg of the water is expelled in 0.14 s so that we can calculate the mean rate of decrease of mass of the rocket:

$$
\frac{\Delta m}{\Delta t}=k=\frac{1.0}{0.14}=7.1 \mathrm{~kg} \mathrm{~s}^{-1}
$$

We can also use these figures to determine the exhaust speed of the water when we know that the radius of the bottle neck is 1.1 cm .
which gives us a relationship between the rate of mass loss and the exhaust velocity:

$$
\frac{\Delta m}{\Delta t}=\pi r^{2} \rho u \quad \text { Equation } 4
$$

When this expression is equated to the actual rate of loss of mass ($7.1 \mathrm{~kg} \mathrm{~s}^{-1}$), it gives a value of u of around $19 \mathrm{~ms}^{-1}$ (remembering that the density of water is rather conveniently $1000 \mathrm{~kg} \mathrm{~m}^{-3}$).

$$
u \times \Delta t
$$

Diagram 3

Comparison Between Ideal Rocket

Theory and Experiment

This is enough information to put into the rocket equations $(2 \& 3)$ and compare with the motion of an actual rocket. The easiest way of doing this is to use a spreadsheet - we can enter both the rocket equations and actual data and compare the two. In the graph shown (diagram 4), the actual 2 litre rocket data is shown as a continuous line. The theoretical rocket equation is represented by the dotted lines. The data for the height of the actual rocket was gathered by using a comparatively cheap digital camera set to 220 frames per second. The video of the rocket motion was then analysed frame by frame using a 30 cm ruler to measure distances on the screen and the continuous curve in the graph obtained.

Interestingly, when these data and the rocket equations were put into a spreadsheet, the value of exhaust speed (u) of $19 \mathrm{~ms}^{-1}$ did not produce an ideal fit (see diagram 4). The best fit for the early motion of the rocket was provided by an exhaust speed of around $21 \mathrm{~ms}^{-1}$ whereas the later motion of the rocket fits better with an exhaust speed of around $18 \mathrm{~ms}^{-1}$. This may seem like a bad agreement but, on the other hand, these discrepancies could be pointing toward the reason for the disagreement.

Diagram 4

Rocket Theory with Decreasing Pressure and Exhaust Speed

The rocket equation fits well for the first 0.10 s of its flight with an exhaust speed of around $21 \mathrm{~ms}^{-1}$ but then the actual rocket does not keep up with its theoretical counterpart and the actual rocket seems to fit better with an exhaust speed of around $18 \mathrm{~ms}^{-1}$. What could be the reason for this? Put simply, it's the decrease in pressure of the air inside the bottle as the water is leaving. But how can we model the pressure inside the bottle? Simplistically, we can use Boyle's law. Robert Boyle in the mid 1600s said for a fixed mass of gas at constant temperature:

$$
\text { pressure } \times \text { volume }=\text { constant }
$$

We know that the initial volume of the gas is around 1 litre (for the 2 litre bottle). The final volume of the gas rather obviously will be 2 litre. Boyle's law therefore tells us that the pressure at the start will be approximately double the final pressure. In between these two stages, each gramme of water that is expelled provides an extra $1 \mathrm{~cm}^{3}$ of air in the bottle and the corresponding pressure drop can easily be calculated using Boyle's law.

Now that we have the details to model the pressure drop in the bottle, it is possible to calculate the speed of the water coming out of the bottle. All we have to do is use Bernoulli's equation.

$$
p_{\mathrm{atm}}=p-\frac{1}{2} \rho u^{2} \quad \text { Equation } 5
$$

Surprisingly enough, this means that the exit speed of the water is independent of the size of the bottle opening!

$$
u=\sqrt{\frac{2\left(p-p_{\mathrm{atm}}\right)}{\rho}}
$$

Equation 6

Now we can use this equation to calculate the exhaust speed of the water. The density of water (ρ) is $1000 \mathrm{~kg} \mathrm{~m}^{-3}$ and the initial ($p-p_{\text {atm }}$) was 3.4×10^{5}. This gives an initial exhaust speed of around $26 \mathrm{~ms}^{-1}$.

For completion, gravity and air resistance should also be incorporated into our model. Gravity is easy enough but what about air resistance? A simple theory for air resistance is that the increase in air resistance is proportional to velocity squared. In fact, if we look up the air resistance of a sphere, we should find:

$$
F_{\text {drag }}=0.47 \times \frac{1}{2} \rho_{\text {air }} v^{2} \times A \quad \text { Equation } 7
$$

where A is the maximum cross-sectional area of the sphere, $\rho_{\text {air }}$ is the density of air and v is the speed of the sphere.

Another great advantage of placing a football on top of the water bottle rocket is that the air resistance can be modelled based on the dimensions of the football. This assumes that the bottle underneath the football has no effect on the air resistance but should be a reasonable approximation considering that the cross-sectional area of the football is far greater than that of the bottle. The density of air ($\rho_{\text {air }}$) is $1.20 \mathrm{~kg} \mathrm{~m}^{-3}$ and the diameter of the football is 22.0 cm and they can both be inputted into the air resistance equation.

All this information should give us a final resultant force acting on the rocket of:

$$
F_{\text {res }}=\pi r^{2} \rho u^{2}-m g-0.0107 v^{2} \quad \text { Equation } 8
$$

where: $u=$ instantaneous exhaust speed of the water
$r=$ radius of the bottle opening
$\rho=$ density of water $\left(1000 \mathrm{~kg} \mathrm{~m}^{-3}\right)$
$m=$ instantaneous mass of the rocket (including the water and football)
$v=$ instantaneous speed of the rocket

Final Comparison between Theory and Experiment

When all this data is put into a spreadsheet with time going up in steps of 1/220th of a second (to match the digital camera) and all rocket data calculated for all the time intervals. This is the end result.

Diagram 5

Here, the rocket theory (dotted line) is in excellent agreement with the experimental results (error bars). At no point is the computed model data outside the error bars corresponding to the actual motion of the rocket (these error bars simply correspond to $\pm 0.5 \mathrm{~mm}$ reading from the ruler next to the computer screen). The final best fit parameters used were $m_{0}=1.52 \mathrm{~kg}$, initial pressure $=4.7 \times 10^{5} \mathrm{~Pa}$ and radius of bottle opening $=1.019 \mathrm{~cm}$.

In conclusion, the motion of a plastic water bottle rocket has been analysed using purely A level Physics with a touch of Bernoulli's equation and drag theory. Although the mathematics used can be complicated, this is relatively easily remedied by using numerical methods in a computer spreadsheet. The results are astonishingly accurate and were aided hugely by the novel idea of a football on top of the rocket.

[^0]: (b) When $R=35 \Omega$ and $C=15 \mathrm{nF}$, the frequency of the supply is adjusted to twice the resonance frequency (approximately 17600 Hz). Calculate the rms current.

